

Smallsat technology trends and their impact on the future of solar system exploration

Tony Freeman, JPL
Sept 2017

Jet Propulsion Laboratory, California Institute of Technology

3rd COSPAR Symposium 2017, Jeju, S. Korea

Cubesats were 'toys' 18 years ago...

Science Instrument Examples (1U = 1 liter)

HARP Imaging Polarimeter(3U)

Mass Spectrometer (3U)

JPL (TBD)

RainCube radar (6U)

JPL (2017)

LunariceCube (6U) IR spectrometer

GSFC (2018)

Lunar Flashlight (6U)
NIR laser

MSFC/JPL (2017)

VSWIR-Dyson (2U) spectrometer

JPL (TBD)

Cubesat-sized Instruments – 2012 and 2017

Technology	Selva* and Krejci, 2012	Freeman 2017	Justification
Atmospheric Chemistry Instruments	Problematic	Feasible	PICASSO, IR sounders
Atmos Temp and Humidity Sounders	Feasible	Feasible	
Cloud Profile and rain radars	Infeasible	Feasible	JPL RainCube Demo
Earth Radiation Budget radiometers	Feasible	Feasible	SERB, RAVAN
Gravity Instruments	Feasible	Feasible	Need a demo mission
Hi-res Optical Imagers	Infeasible	Feasible	Planetlabs
Imaging microwave radars	Infeasible	Feasible	Ka-Band 12U design
Imaging multi-spectral radiometers (Vis/IR)	Problematic	Feasible	AstroDigital
Imaging multi-spectral radiometers (μWave)	Problematic	Feasible	TEMPEST,
Lidars	Infeasible	Feasible	DIAL laser occultation
Lightning Imagers	Feasible	Feasible	
Magnetic Fields	Feasible	Feasible	InSPIRE
Multiple direction/polarization radiometers	Problematic	Feasible	HARP Polarimeter
Ocean color instruments	Feasible	Feasible	SeaHawk
Precision orbit	Feasible	Feasible	CanX-4 and -5
Radar altimeters	Infeasible	Feasible	Bistatic LEO-GEO
Scatterometers *Selva and Krejci, A survey and assessment of the capabiliti	Infeasible	Feasible	GPS refl. (CyGNSS)

^{*}Selva and Krejci, A survey and assessment of the capabilities of Cubesats for Earth observation, Acta Astronautica, 74, 50–68 (2012)

Slide courtesy J. Castillo-Rogez, JPL

© 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

RF

Telecom

Optical

ISARA Reflectarray/Solar Array

JPL (2017)

Optically Transparent/ RF Reflective Coatings

Utah State (TBD)

- RF Reflectarrays can scale to larger antennas
- Active and passive Optical Comm
 - Optically transparent/RF reflective coatings printed on large solar arrays on deep space missions

Dual-use Solar arrays

Aerospace (2016/7)

(TBD)

Bridgesat Optical Comm Terminal

Bridgesat (TBD)

© 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

Power Systems

- Solar Array Plateau ~ 45% efficiency?
- Batteries that work over wide temperature ranges?
- Electromagnetic tethers great if there's a ma
- Progress in nuclear dependent on NASA/

Compact RTGs?

Electromagnetic Tethers

Tethers Unlimited (TBD)

Pre-Decisional Information — For Planning and Discussion Purposes Only

Spacecraft S/W Functions

Propulsion

Solar Sail (first design in 1976)

Planetary Society (2015)

Deployable Aeroshell

NASA Ames (2017)

MicroSpray Electric propulsion

Busek (2019)

NASA EM Drive

NASA JSC (???)

eSail demo

Aaalto U. Finland (2017)

Attitude Determination and Control

- Fraction of an arcsec pointing
- Navigation using Pulsars
- Precision Formation Flying

Asteria
Exoplanet Hunter

JPL/MIT (2018)

CanX-4 and -5
Precision Formation Flying

UTIAS SFL (2014)

XPNav-1
Deep Space navigation using X-ray Pulsars

© 2017 California Institute of Technology. U.S. China (2016) Government sponsorship acknowledged.

Cubesat Assembly

(in less than one workday)

Video clip courtesy Tyvak Corporation

Advanced Manufacturing

- 3-D printed valves on Falcon-9
- 3-D printing of S/C components
- Multi-function Structures
- Robot-assisted Integration and Test
- S/C build cycles < 1 week

Robot-assisted assembly [15 Smallsat S/C per week]

OneWeb (2018)

Planetary Resources (2014)

3-D Printed Rocket Engine

Space-X (2014)

Additive Manufacturing

- 3-D printer as a flight payload
- Print Hardware Upgrades
- Use In situ resources
- Large-scale Structures in Space

Making a Spacecraft out of an Asteroid

Made In Space (TBD)

First 3-D Printer in Space

Made In Space on ISS (2014)

Object printed from asteroid metals

Planetary Resources (2016)

© 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

Mars Cube One

- Two redundant 6U CubeSat spacecraft
- Launch: Mar. 2016; Arrival: Sep. 2016
- Real-time relay of InSight EDL data
 - UHF link: InSight lander to MarCO
 - X-band link: MarCO to Earth

A Technology Demonstration of communications relay system for Mars missions' critical events such as the 2016 InSight entry, descent, & landing.

Interplanetary Travel Flyby Mars

NEAScout

Near Earth Asteroid ScoutSat (NEAScout)

EXPLORATION MISSION-1: LAUNCHING SCIENCE & TECHNOLOGY SECONDARY PAYLOADS

SUPPORTS BOTH
PRIMARY MISSION
AND SECONDARY
PAYLOADS

PRIMARY MISSION

TESTING SLS

SPACE LAUNCH SYSTEM (SLS)

LIFTS MORE THAN ANY EXISTING

EXISTING LAUNCH VEHICLE

ORION SPACECRAFT

TRAVELING THOUSANDS OF MILES BEYOND THE MOON, WHERE NO CREW VEHICLE HAS GONE BEFORE

CU EXP GOING TO WHERE F

SECONDARY PAYLOADS

THE RING THAT WILL
CONNECT THE ORION
SPACECRAFT TO NASA'S
SLS ALSO HAS ROOM
FOR 13 HITCHHIKER
PAYLOADS

AVIONICS

(SELF-CONTAINED AND INDEPENDENT FROM THE PRIMARY MISSION) SEND CUBESATS ON THEIR WAY

13 CUBESAT EXPLORERS

GOING TO DEEP SPACE WHERE FEW CUBESATS HAVE EVER GONE BEFORE.

SHOEBOX SIZE

PAYLOADS EXPAND OUR KNOWLEDGE FOR THE JOURNEY TO MARS

#RIDEONSLS

EM-1 (2018): THE FIRST SCIENCE **SWARM OF CUBESATS** [Ride-alongs]

SUPPORTS BOTH PRIMARY MISSION AND SECONDARY PAYLOADS

ORION . **SPACECRAFT**

TRAVELING THOUSANDS OF MILES BEYOND THE MOON. WHERE NO CREW VEHICLE HAS GONE BEFORE

GOING TO DEEP SPACE WHERE FEW CUBESATS HAVE EVER GONE BEFORE.

SECONDARY PAYLOADS

THE RING THAT WILL CONNECT THE ORION SPACECRAFT TO NASA'S SLS ALSO HAS ROOM FOR 13 HITCHHIKER **PAYLOADS**

SHOEBOX SIZE

PAYLOADS EXPAND OUR KNOWLEDGE FOR THE JOURNEY TO MARS

#RIDEONSLS

AVIONICS

(SELF-CONTAINED AND INDEPENDENT FROM THE PRIMARY MISSION) SEND CUBESATS ON THEIR WAY

MISSION TESTING SLS AND ORION SPACE LAUNCH SYSTEM SLS JIFTS MORE THAN ANY

EXISTING

LAUNCH

VEHICL

PRIMARY

Cupid's Arrow (Venus) Mission Concept Atmospheric Entry Conditions

Pre-Decisional Information -- For Planning and Discussion Purposes Only © 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

ASTERIA: Arcsecond Space Telescope Enabling Research in Astrophysics

- PI: Sara Seager, MIT
- Single star at-a-time planetary transits
- 0.1 arcsec precision pointing

Sun Radio Imaging Space Experiment

SMEX Heliophysics Step II selection - Mission Concept

CubeSats at Saturn?

- Power
 - 1.2-2W solar power @ Saturn
 - ~ 11 days to fully charge 200 Whr capacity with 1.2 W array
 - Up to 1200 Whr with primary batteries
- Control
 - <0.003° pointing; >35°/sec slew rates
- Communications (relay to primary)
 - X band with 5 W RF power
 - Antennas > 28 dBi gain X band
- Propulsion (chemical)
 - ~250 m/s ΔV for a 12 kg 6U
- Thermal
 - Some concepts would benefit from a compact RHU to survive thermal extremes

Lunar IceCube: 120 W @

MarCo 28 dBi

Deep Space Cubesat

Titan Arrow Concept

Mission Overview

- Primary S/C orbiting Saturn with flybys of Titan
- Probe released from Primary onto spin stabilized "dive" trajectory
 - Primary deflects from entry trajectory post separation
- Probe skims through the atmosphere down to homopause (~500 km)
 - Collects in situ samples for mass spec analysis
 - Probe performs aerocapture maneuver
- Probe exits atmosphere, drops backshell and transmits data to Primary to be sent to Earth
- Probe disposed to acceptable location on Titan on next periapse pass

Science Overview

- Huygens Probe didn't sample upper atmosphere
- Upper atmosphere data desired for complete model

Titan Arrow Objectives:

 Determine Upper atmosphere constituents (Ne, Ar, Kr, Xe)

Constituents determined with Quadrupole Ion Trap Mass Spectrometer (QITMS)

Spacecraft Concept

Galileo based 45° sphere cone, ~0.55 m

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Saturn Ring Diver Concept

Mission Architecture

- 6U CubeSat rides along with primary mission to Saturn
- Released at apoapse after Primary does Saturn orbit insertion
- CubeSat performs inclination change maneuver ~45°
- CubeSat dives through narrow gap in rings while taking pictures
- If it survives, it transmits images to Primary via high gain antenna
- CubeSat continues in ring diving orbit if it survives, is destroyed by rings if it doesn't

Science Overview

Ring Science Gaps

Mass, Age, Structure

Ring Diver investigates the ring structure by:

- Determine density of Saturn's ring (TBD)
- Size and distribution of ring particles
- Particle Morphology

Objectives achieved with <10 cm per pixel resolution camera

Slide courtesy Andrew Bocher, Cal Poly SLO

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Predecisional information for planning and discussion only.

Investigating Titan's Magnetosphere

Mission Overview

- Primary Spacecraft inserts into Titan orbit
- 6U CubeSat released into same orbit
 - ~5.8 hour orbit
- Deploys magnetometer on 0.6m boom
- 5 orbits of 1 and 0.03 Hz measurements for the magnetometer and plasma instrument respectively
- 90 orbits recharging batteries and relaying to
 Primary via S/C low gain antennas
 - Primary relays data back to Earth
- Disposal into Titan

Science Overview

- Measure interaction of solar wind and Titan's magnetosphere
- Map Titan's magnetosphere

Objectives achieved with a Vector Helium magnetometer and Faraday Cup plasma instrument

Spacecraft Concept

6 panel solar array (1.2 W)
Aerojet Rocketdyne MPS12
~250 m/s with AF-M315
BCT XACT 50 (0.003°)
JPL PlasMag
(boom ~ 0.6m)

Single RHU (~1 W heat)

Secondary
Batteries (~400
Whr)
GomSpace P60
EPS
JPL Sphinx
computer
IRIS 2.1 radio
~100 kbps
@3000 km

Slide courtesy Andrew Bocher, Cal Poly SLO

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Predecisional information for planning and discussion only.

Concepts for Surface Mobility Systems

Under the Ice

- Subsurface probes
- Drones on Titan or Mars

Through the Ice

Pre-Decisional Information — For Planning and Discussion Purposes Only

Humanoid Robots

Kirobo on ISS

"That's one small step for me"

Humanoid Robots

Artificial Intelligence?

Tool use - DARPA

Augmented Reality

Motion Capture

Going Interstellar

Breakthrough Starshot

Kicksat Sprite

picosat (1-2 g)

breakthroughinitiatives.org/Initiative/3

Summary

- The building blocks are lining up for some really exciting "Discovery-class" Smallsat missions in the very near future
- Miniaturization of instruments in particular has seen significant progress
- Smallsats allow fast-track infusion of technology for <u>all</u> future deep space missions
 - Don't have to wait 40 years like we did for solar sails
- On Earth, some technologies smaller instruments, AI, robotics, adv. manufacturing – are taking off exponentially
- When these exponential technologies converge and are space-adapted they will open up mind-blowing possibilities!

© 2017 California Institute of Technology. Government sponsorship acknowledged.